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KINETIC ANALYSIS USING MULTIVARIATE
NON-LINEAR REGRESSION
I. Basic concepts
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Abstract

In principle, the kinetic analysis of thermal effects has limitations when based on a single measurement.
Using a simulated example and the dehydration of Ca(OH)2, it will be shown that, through the simulta-
neous application of non-linear regression to several measurements run at different heating rates
(multivariate non-linear regression), the difficult problem of determining the probable reaction type can
be reliably solved.
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Introduction

The application of kinetic analysis will be considered from two aspects:

• From the scientific aspect, an attempt is made to record the individual steps of
the entire process as a model, to clarify them and interpret them in a physi-
cal/chemical sense.

• From the technical aspect, the kinetic analysis is examined as a tool for data
reduction. The information is extracted from a series of measurements with
many data points in the form of a model with few parameters.
This model is then used in the preparation of predictions and for process opti-
mization.

Considering the application of kinetic analysis from these two aspects requires a
different procedure:

A model (hypothesis) is set up, in which the individual reaction steps can be in-
terpreted chemically and/or physically. The hypothesis is compared with the experi-
mental results and, if possible, with results obtained from other experimental meth-
ods as well. If the hypothesis and experiment are contradictory, the hypothesis is re-
placed with another. If they agree, further experiments can be carried out in order to
further support or refine the hypothesis [1]. In many cases, the tests involve variation

1418–2874/2000/ $ 5.00

© 2000 Akadémiai Kiadó, Budapest

Akadémiai Kiadó, Budapest

Kluwer Academic Publishers, Dordrecht

* II. Simulation of two-step reactions [32]



of the test sample, so as to make its specific properties apparent. Such a procedure for
thermoanalytical measurements is demonstrated by Flammersheim et al. [2].

From scientific aspect, the analysis of the reaction kinetics should therefore an-
swer three questions:

1. How does one investigate the mechanism of the gross reaction?
2. How does one calculate the reaction conversion as a function of time?
3. How can one make the course of an elementary reaction understandable with

molecular models?
From technical aspect, one usually starts with a given test sample. A targeted

variation of this sample is often impossible since, for example, the supplier of the ma-
terial does not want to reveal his know-how. The kinetic model is, to the greatest ex-
tent, formal. Therefore, the reactants are also formal; their concentrations assume
only values between 0 and 1.

The kinetic model as a combination of individual steps serves as an efficient fil-
ter for data reduction. An interpretation of the single steps and their parameters is not
planned for the time being [3].

Often, the behavior of the test sample is investigated under conditions as close as
possible to those for which the predictions will be made. In contrast, the effects of
specific conditions [4] are only seldom taken into consideration. The simpliest model
to be designed should be capable of describing the essential characteristics of the data
in the reaction field over the time and temperature of the measurements.

General statistical knowledge says that the level of confidence of predictions in the
range of analysis is especially high and is directly proportional to the quality of the fit.
For thermoanalytical measurements, this means that the largest possible range of the ac-
cessible time/temperature field [5] must be covered with isothermal measurements at dif-
ferent temperatures or with dynamic measurements at different heating rates.

In their practical realization, the two aspects have much in common, in spite of
their antithetic goals:

• A kinetic model must be set up.
The kinetic model contains, on the one hand, the reaction diagram, i.e. the
combination of single reaction steps, and on the other hand, the concrete as-
signment of each reaction step to a reaction type.

• The parameters of the model must be specified so that the experiment may be
described as well as possible.

• The aim is a comprehensive solution, which is valid for a greater range of the
test parameters.

The basic concept

For kinetic analysis of the reaction (1), Eq. (2) is generally assumed.

→A( ) B( ) B'( )s s g+ (1)

d de t U t T e p/ ( , , , )=− (2)
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where:
t/s time,
T/K temperature,
e start concentration of the reactant,
p concentration of the final product.

With the help of that, formalisms of homogeneous kinetics are applied to hetero-
geneous reactions [6]. From the scientific aspect, there are justified objections to this
procedure, but not for the technical aspect described above.

It is further assumed that the conversion function, U(t,T,e,p), can be described
by two separable functions, k(T) and f(e,p):

U(t,T,e,p)=k(T(t))f(e,p) (3)

For one-step reactions, f(e,p) reduces to the known form, f(x), where e=1–α and
p=α (α=degree of conversion). The complete separation of variables in Eq. (3) is,
however, only possible for one-step processes. Thus, an analytical solution of the dif-
ferential Eq. (2) can also only be achieved for one-step reactions. For complex,
multi-step processes, the differential Eq. (2) becomes a system of differential equa-
tions, for which a separation of variables is no longer possible. Therefore, there is no
analytical solution either.

Indeed, Eqs (4a) and (4b) are suggested from the collision theory and the theory
of the transition state, respectively. Since the term, T m (m=1/2 or m=1), becomes no-
ticeable in both equations, but only at low temperatures, m=0 and the Arrhenius
Eq. (4) will be assumed to be valid for the following:

k(T)=Aexp(–E/RT) (4)

k(T)=BT1/2exp(–E/RT) (4a)

k(T)=CTexp(–E/RT) (4b)

Furthermore, it will be assumed that all reactions are irreversible. Accordingly,
in carrying out the tests, the researcher must see that this condition is fulfilled to the
greatest extent possible. For decomposition reactions, for example, the gaseous reac-
tion products must be removed from the reaction chamber by applying vacuum or
purging with gas.

A series of reaction types is listed in Table 1. This list contains classic homoge-
neous reactions and typical solids reactions. In comparison to the known reaction
types [7], the list is extended with the combined autocatalytic types C1 and Cn,
which, on careful examination, already represent parallel reactions with the same ac-
tivation energy.

The above-stated requirement, for the most comprehensive validity possible of
the solution found, is solved in a series of papers [8–10], in that first of all each mea-
surement in a series of measurements is individually analyzed and only one-step reac-
tion processes are considered. Only in a second step is a compromise solution sought
by averaging the calculated kinetic parameters.
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Table 1 Reaction types and corresponding reaction equations de/dt= –Aexp(E/RT)f(e,p),
e=start concentration of the reactant, p=concentration of the final product

Code f(e,p) Reaction type

F1 e first-order reaction

F2 e2 second-order reaction

Fn en nth-order reaction

R2 2e1/2 two-dimensional phase boundary reaction

R3 3e2/3 three-dimensional phase boundary reaction

D1 0.5/(1–e) one-dimensional diffusion

D2 –1/ln(e) two-dimensional diffusion

D3 1.5e1/3/(e–1/3–1) three-dimensionsl diffusion (Jander’s type)

D4 1.5/(e–1/3–1) three-dimensional diffusion (Ginstling–Brounstein type)

B1 ep simple Prout–Tompkins equation

Bna enpa expanded Prout–Tompkins equation (na)

C1–X e(1+KcatX)
first-order reaction with autocatalysis
through the reactants, X
X = a product in the complex model, frequently X=p

Cn–X en(1+KcatX)
nth-order reaction with autocatalysis through the
reactants, X

A2 2e(–ln(e))1/2 two-dimensional nucleation

A3 3e(–ln(e))2/3 three-dimensional nucleation

An ne(–ln(e))(n–1)/n n-dimensional nucleation/nucleus growth according to
Avrami-Erofeev

With multivariate kinetic analysis [5, 11–14], a totally different approach is
taken: the assumption is made that the parameters of the model are a priori identical
for all measurements. This is constrained by the determination of the parameters in an
analysis of all of the measurements together. If the quality of fit is insufficient with
the given model, the model must be improved through extension to multi-step reac-
tion processes with different combinations. This is demonstrated in section 4 using
the dehydration of Ca(OH)2 as an example.

The kinetic parameters through which the model is characterized are divided
into two groups. One group is valid for all scans and is therefore model-specific. The
other group is specific for one scan at a time. For example, for the description of a
two-step secondary reaction A → B → C one obtains the set of parameters given in
Table 2 from three thermogravimetric measurements. Here, only parameters 8
through 10 are scan-specific, all other parameters are model-specific and are thus
valid for all scans. The parameters are determined via a hybrid regularized Gauss–
Newton method (Marquardt method). Related details can be found in Appendix 1.
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Table 2 Relationship between the parameters and the reaction pattern for a two-step consecutive
reaction A→ B→C and the assumption of nth-order reactions and three thermogravi-
metric measurements

# Parameter Definition

Step 1: A→B

1 lg(A1/s–1) logarithm of the pre-exponential factor of step 1

2 E1/kJ mol–1 activation energy of step 1

3 n1
order of reaction of step 1
Step 2: B→C

4 lg(A2/s–1) logarithm of the pre-exponential factor of step 2

5 E2/kJ mol–1 activation energy of step 2

6 n2 order of reaction of step 2

7 FollReact. 1
share of step 1 in the total mass loss
(the share of step 2 is 1 – FollReact. 1)

8 MassDiff 1% total mass loss of scan 1

9 MassDiff 2% total mass loss of scan 2

10 MassDiff 3% total mass loss of scan 3

Improvement of the distinguishability of different reaction types
through multi-curve analysis

A single dynamic measurement already contains all the information about the kinetic
model and its parameters, but this information is generally insufficient to solve the
above-stated problem satisfactorily [15–17]. A complaint was also made in more re-
cent work, namely it is not possible to determine the reaction type with statistical cer-
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Fig. 1 Fit of a single TG measurement, simulated with reaction type A2 and a heating
rate of 10 K min–1 to reaction types F1 and D3. Initial parameters for
A2: lg(A/s–1)=1.079, E/kJ mol–1=76.00



tainty when the temperature program is linear. Brown [18] is not totally unjustified in
characterizing the previous procedure as ‘steps in a minefield’.

Criado et al. [19] explain a simulated example in which a single TG curve,
measured with the heating rate of 10 K min–1, for which the reaction type is based on
the two-dimensional nucleation reaction (A2), can be fitted almost congruently both
with a first-order decomposition reaction (F1) and a three-dimensional Jander’s-type
diffusion (D3) (Fig. 1). This simply means that locally, i.e. for a single heating rate,
several equivalent solutions exist and, therefore, no statistically certain decision is
possible as to which reaction type applies. In the following, the kinetic data given in
[19] will be used to simulate and analyze TG curves at different heating rates. In order
to make realistic statements, the simulations are superposed with statistical noise (an
amplitude of 0.2% of the maximum value).

The results shown in Table 3 are obtained with the additional heating rates of 1,
2.5 and 5 K min–1. For reaction types A2, F1 and D3, a high quality of fit is always
obtained for all heating rates (correlation coefficient>0.9995). Therefore, a specific
local solution is found for each heating rate and each reaction type. The great differ-
ences in both the activation energies and the pre-exponential factors for the various
reaction types are, however, remarkable. For that reason, it is not surprising that pre-
dictions based on the kinetic analysis of a single measurement generally lead to large
deviations as compared to experiments with varied conditions.

Table 3 Kinetic parameters resulting from single-curve analyses with reaction types F1 and D3
from TG measurements, simulated with reaction type A2

Heating rate/
K min–1 Reaction type lg(A/s–1) E/kJ mol–1 Corr. coeff.

10.0 F1 6.06±0.02 168.7±0.3 0.999 995

D3 12.13±0.18 306.1±3.3 0.999 719

5.0 F1 6.42±0.03 169.6±0.5 0.999 992

D3 12.95±0.21 307.4±3.7 0.999 685

2.5 F1 6.83±0.04 171.4±0.7 0.999 989

D3 13.88±0.24 310.4±4.1 0.999 672

1.0 F1 7.03±0.03 167.9±0.3 0.999 994

D3 14.49±0.22 303.4±3.4 0.999 727

In contrast, if a comparison is made of the analysis of results for different heat-
ing rates but the same reaction type, the differences with respect to the activation en-
ergy are slight. This leads to the following conclusion: for the analysis of a single
curve, even if there is practically no change in the activation energy when the heating
rate is changed, this is not a sure indication that the correct reaction type has been de-
termined. Taking the mean of the kinetic parameters from single curve analyses of
measurements run at different heating rates [8] should also be viewed with caution.

Therefore, as a solution to the problem, Criado et al. [19] suggest running the
measurement in the CRTA mode (controlled rate thermal analysis). With this special
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temperature program, the mass decreases at a constant rate. By plotting the tempera-
ture with respect to the degree of conversion, one obtains specific curve profiles:

• monotonously rising for phase boundary reactions (R2, R3) and chemical re-
actions (F1, Fn),

• monotonously descending for one-dimensional diffusion (D1),
• sigmoidally rising for two- and three-dimensional diffusion (D2, D3, D4),
• through-shaped with defined dependence of the minimum on the reaction type

(A2 through A4).

Based on the form, it is easier to identify the group to which the curve belongs.
An important requirement for the applicability of this method is, however, the guar-
anteed presence of a one-step reaction.

With multivariate non-linear regression as the method of analysis, a different
procedure is favored: several dynamic measurements run at different heating rates
and/or several isothermal measurements run at different temperatures are brought to-
gether during the analysis.

For the example given above, a satisfactory fit is possible only with model A2
for the common analysis of the TG measurements run at heating rates of 1, 2.5, 5 and
10 K min–1 (Table 4 and Figs 2–4). This solution is then globally valid, at least for the
range of heating rates between 1 and 10 K min–1. Even for the non-applicable reaction
types, the calculated activation energy now clearly lies closer to the value of
76 kJ mol–1 (Fig. 1), upon which the simulations are based. The position of the indi-
vidual TG curves with respect to one another apparently forces the activation energy
closer to the correct value, while the other kinetic parameters are optimized to
achieve a high quality of fit. Compared to the single curve analysis, the quality of fit
diminishes considerably for the non-applicable reaction types F1 and D3. That is also
the reason why the distinguishability between the individual reaction types with an
F-Test (Table 4) improves so drastically. (A detailed description of the F-Test can be
found in Appendix 2.) Now the ‘correct’ reaction type is significantly recognized and
the kinetic parameters apply.

Table 4 Kinetic parameters resulting from multiple-curve analyses (heating rates 1, 2.5, 5 and
10 K min–1) with reaction types F1 and D3 from TG measurement, simulated with reac-
tion type A2 and a noise level of 0.2%

Reaction type lg(A/s–1) E/kJ mol–1 Corr. coeff. Fexp Fcrit(0.05)

A2 1.079 76.0 0. 999 99 1.00 1.09

F1 2.406 98.7 0.980 89 5015 1.09

D3 4.196 148.7 0.943 02 14608 1.09

As investigations of the behavior, conducted using several measurements run at
the same heating rate [20], have shown, the local solution is more stable for such a
procedure, since the errors of measurement balance out. However, an increase in the
distinguishability, as found when using measurements run at different heating rates,
is not achieved.
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Fig. 2 Fit of TG measurements, simulated with reaction type A2 and a noise level of
0.2% for the heating rates 1, 2.5, 5 and 10 K min–1, to reaction type A2. Signs
measured, –– calculated

Fig. 3 Fit of TG measurements, simulated with reaction type A2 and a noise level of
0.2% for the heating rates 1, 2.5, 5 and 10 K min–1, to reaction type F1. Signs
measured, –– calculated

Fig. 4 Fit of TG measurements, simulated with reaction type A2 and a noise level of
0.2% for the heating rates 1, 2, 5 and 10 K min–1, to reaction type D3. Signs
measured, — calculated



Finding the probable model for actual measurements, illustrated
by using the thermal decomposition of Ca(OH)2 as an example

The objection could be made that, with simulated data, the situation is too favorable
as compared to actual measurements and only for that reason is the distinguishability
achieved. The thermal decomposition of Ca(OH)2 will be used to show that, in spite
of ever-present measurement errors, the multivariate data analysis leads to success.

Experimental

The thermogravimetric measurements were carried out on a NETZSCH STA 429 un-
der N2 and a low partial pressure of H2O at heating rates of 5, 10.3 and 21 K min–1.
The sample masses were between 47 and 51 mg.

Single curve analysis

Figure 5 depicts the results of the kinetic analysis for a heating rate of 10.3 K min–1.
As with the simulations, the kinetic analysis for several reaction types provides an ex-
cellent quality of fit. This means that no decision can be made regarding the probable
reaction type by means of an F-Test (Table 5). All of these solutions apply from the
standpoint of the curve fit, though only locally – for the heating rate of 10 K min–1.
For other heating rates, other values are obtained for the kinetic parameters and, if
necessary, another reaction type may give the best fit.

Table 5 Result of single-curve analyses of the thermal decomposition of Ca(OH)2 with reaction
types D4, D2, R2 and D3

Heating rate/
K min–1 Reaction type lg(A/s–1) E/kJ mol–1 Corr.

coeff.
Fexp Fcrit(0.05)

21.5 D4 13.80 246.4 0.999 90 1.00 1.18

D2 13.46 233.0 0.999 90 1.03 1.18

R2 5.79 121.0 0.999 81 1.83 1.18

R3 6.32 130.3 0.999 39 5.96 1.18

D3 15.65 271.6 0.999 35 6.32 1.18

10.3 D4 15.20 262.1 0.999 95 1.00 1.19

D2 14.78 248.0 0.999 93 1.50 1.19

R2 6.29 128.0 0.999 87 2.64 1.19

D3 17.31 290.0 0.999 50 10.02 1.19

R3 6.93 138.6 0.999 47 10.44 1.19

5.0 D2 15.19 249.8 0.999 96 1.00 1.20

D4 15.64 263.9 0.999 92 2.09 1.20

R2 6.33 128.6 0.999 78 5.85 1.20

D3 17.82 292.0 0.999 39 15.89 1.20

R3 7.00 139.2 0.999 32 17.74 1.20
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Multiple curve analysis

The strength of multivariate data analysis becomes apparent in Figs 6 and 7 and Ta-
ble 6. Indeed, the simultaneous kinetic analysis of all three heating rates shows that
neither the three-dimensional diffusion (D4) nor the two-dimensional diffusion (D2),
which most frequently led to the best fit for the single curve analysis, is the probable
reaction type. Rather, it is the two-dimensional phase boundary reaction (R2), which
was identified after having been ruled out as an acceptable model for the quality of fit
in the single curve analysis for all heating rates.

The decision in favor or the two-dimensional phase boundary reaction is of great
statistical significance in the multiple curve analysis (Table 6).

The question remains as to why the two-dimensional phase boundary reaction is
characterized as an unacceptable reaction type in the single curve analysis. An initial an-
swer to this question is provided by the model-free estimation of the activation energy as
described by Ozawa, Flynn and Wall [21–23, details in Appendix 3] (Figs 8 and 9).
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Fig. 5 Fit of a single TG measurement of the decomposition of Ca(OH)2, to reaction
types D4, D2 and R2. Heating rate: 10.3 K min–1

Fig. 6 Kinetic analysis of TG measurements on Ca(OH)2 with reaction type R2. Signs
measured, –– calculated



Table 6 Result of multiple-curve analyses of the thermal decomposition of Ca(OH)2, measured
with heating rates of 5, 10.3 and 21.5 K min–1

Reaction
type

lg(A/s–1) E/kJ mol–1 Corr. coeff. Fexp Fcrit(0.05)

R2 6.23 127.2 0.999 72 1.00 1.11

R3 6.49 132.6 0.999 19 2.88 1.11

D2 11.39 209.2 0.984 71 54.14 1.11

D4 11.29 199.5 0.982 96 60.28 1.11

D3 12.86 228.2 0.979 39 72.79 1.11

It is clear in Fig. 9, that the activation energy assumes a value of 160 kJ mol–1 at
the beginning of the decomposition reaction and, with increasing mass loss, drops to
a value of 125 kJ mol–1. This dependence of the activation energy is an indication that
the overall reaction contains at least two steps. Presumably, the type R2 main reac-
tion, with an activation energy of 125 kJ mol–1, is preceded by another reaction with a
higher activation energy.
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Fig. 7 Kinetic analysis of TG measurements on Ca(OH)2 with reaction type D4. Signs
measured, –– calculated

Fig. 8 Ozawa–Flynn–Wall model-free analysis of TG measurements on Ca(OH)2. 0.02
and 0.98 are the degrees of reaction for the first and the last isoconversional line,
respectively



Table 7 Comparison of the results of multiple-curve analyses of the thermal decomposition of
Ca(OH)2 with one- and multiple-step reaction patterns

Reaction
type(s)

Parameter Value Corr. coeff. Fexp Fcrit(0.05)

F1 lg(A1/s–1) 9.95±0.32 0.999 81 1.00 1.11

E1/kJ mol–1 151.4±4.5

R2 lg(A2/s–1) 6.35±0.03

E2/kJ mol–1 128.8±0.4

FollReact.1 0.033±0.005

R2 lg(A1/s–1) 6.23±0.03 0.999 72 1.44 1.11

E1/kJ mol–1 127.2±0.3

R3 lg(A1/s–1) 6.49±0.05 0.999 19 4.15 1.11

E1/kJ mol–1 132.6±0.7

D2 lg(A1/s–1) 11.39±0.16 0.984 71 77.99 1.11

E1/kJ mol–1 209.2±2.3
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Fig. 9 Activation energy vs. fractional mass loss for TG measurements on Ca(OH)2.
~ – activation energy, � – lg(A/s–1)

Fig. 10 Kinetic analysis of TG measurements on Ca(OH)2, fitted as a two-step consecu-
tive reaction with reaction types F1 and R2. Signs measured, –– calculated



This presumption is confirmed by the kinetic analysis (Fig. 10, Table 7). The main
reaction, characterized by a two-dimensional phase boundary reaction, is preceded by a
first-order (F1) reaction. However, the first step amounts to only 3.3±0.5% of the total
mass loss and is therefore not so obvious.

Conclusions

The difficulties of kinetic analysis, which are closely related to the high correlation of
the kinetic parameters, are actually rooted in the meager amount of information con-
tained in a single measurement [24]. Therefore, in spite of a high quality of fit (corre-
lation coefficient >0.999), the kinetic parameters also have a relatively high confi-
dence interval [15]. Through multiple curve analysis (multivariate analysis), with
which several measurements run at different heating rates and/or isothermal measure-
ments run at different temperatures are combined in one analysis, the behavior of the
sample is examined in a global range of the reaction field (Fig. 11). While in isother-
mal measurements with one curve already the reaction type can be estimated and only
with additional curves the activation energy, on the base of one dynamic measure-
ment both, reaction type and activation energy, are estimable. But the confidence of
such an estimation is very small. In a single curve analysis only the information
nearly to the temperature line is taken into account, i.e. the temperature line with a
heating rate of 20 K min–1. Contrary to this, in multiple curve analysis the information
of any curve is not handled separately, but in the context to the information of all
curves, which are summarized in this analysis.

With the greater amount of information now available as compared to a single
curve, the desired improvement in distinguishability between reaction types is
achieved.
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Fig. 11 Plot of the reaction field through isothermal and dynamic measurements (sche-
matic). It demonstrates the different behavior of isothermal and dynamic mea-
surements: isothermal measurements start with a strong, dynamic measurements
with a soft variation in α. The set of isothermal as well as of dynamic measure-
ments contains information of the area between the temperature lines



Undoubtedly, isothermal measurements have the advantage that there is a com-
plete separation of the variables time and temperature. Frequently, however, detec-
tion of the transition from rapid heating to isothermal operation is problematic. If
autocatalytically activated reactions are disregarded, the highest conversion lies di-
rectly in this range. In contrast, dynamic measurements have the decisive advantage
that they are experimentally easier to perform. In addition, only this type of measure-
ment is reasonable for instruments with slower furnaces.

Previous experience speaks for a variation of the heating rate by a factor of at
least 5. Three to four measurements are generally sufficient. For complex problems,
both the range of heating rates and the number of measurements should be increased
if necessary. It should be emphasized, that only the comparison of measurements run
at different heating rates makes the presence of competing reactions discernible [32].

Overall, multivariate analysis – with its improved power of discernment – proves to
be the way to achieve a kinetic model that is valid for a greater time and temperature
range. Only now do predictions – isothermal or for a specific temperature program –, that
are so important to technology, attain the required level of confidence. At the same time,
one of the requirements is fulfilled for tackling the next stage in the kinetic analysis of
thermal effects, namely the analysis of multiple step reaction paths.

Appendix 1

The task of non-linear regression is the iterative calculation of the minimum sum of least squares, LSQ.
According to the maximum likelihood theorem, the method is optimal when the weighting Eq. (6) is
carried out at the same time. Then, LSQ yields χ2 [25].

LSQ Yexp –Ycal )j,k

k=Start i

Final

j=1

M

j,k j,k

j

j

= ∑∑ w ( 2 (5)

where

w
M

j,k

j j

j=1

M

j j j

(Final –Start )

(Final –Start ) S Yexp
=
∑

1
2 ( ,k j,kYcal) ( )+S2

(6)

and
M the number of measurements,
j curve index,
Startj index of the point for which x > xStart is valid,

(xStart is preset by the user)

Finalj index of the point for which x < xfinal is valid,

(xfinal is preset by the user)

Yexpj,k experimental value of the curve j in points k,
Ycalj,k calculated value for the point j, k,

S2(Yexpj,k) the experimental error of the measured point j, k,

S2(Ycalj,k) the error of the calculated point j, k.
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Through the first term in Eq. (6), each measurement enters into LSQ with the same weight, in-
dependent from its number of points, Nj. For the second term in Eq. (6), it is generally assumed that
S2(Yexpj,k) is independent of the heating rate and S2(Yexpj,k) >> S2(Ycalj,k) applies. This term is
therefore normally set equal to 1. More recent experience [26] has now shown that, specifically for
DSC measurements, this first assumption is not correct. Apparently the points from measurements
run at lower heating rates exhibit a smaller absolute error than measurements run at higher heating
rates. Therefore, a weighting for which Eqs(7a) or (7b) applies appears to be better. More experi-
ence is required in this area.

w
M

j,k

i i

i=1

M

j j

=

(Final –Start )

(Final –Start ) abs(Max(

∑ 1

Yexp ))+abs(Min(Yexp ))j,k j,k

(7a)

wj,k

i i

j=1

M

j j

2

(Final –Start )

(Final –Start ) Max(Y ex
=
∑
M

1

p )+Min(Y exp )j,k

2

j,k

(7b)

Ycalj,k is the solution for the system of differential equations. For the example shown, a

two-step consecutive reaction A → B → C, one obtains

d

d
exp –

j,k

a

t
f a b A

E

RT
=









– ( , ) 1

1
(8)

d

d

d

d j,k

b

t

a

t
f b c A

E

RT
=− − −









( , ) exp2

2
(9)

c a b= − −1 (10)

Between the interpolation nodes, the temperature Tj,k is interpolated linearly. Ycal j,k then re-
sults under consideration of the balance equation for thermogravimetric measurements Eq. (11) or
for DSC measurements Eq. (12). Here, the theoretical concentrations a, b and c have the following
initial values: a0=0.99950, b0=0.00049 and c0=0.00001.

For the solution of the system of differential equations, a 5th-degree Runge–Kutta matrix
method (Prince–Dormand method [27]) is employed as a subprogram. This subprogram is, for its
part, tied into a hybrid regularized Gauss–Newton method [28]. Further details can be found in [29].

Ycal =Ycal +MassDiff [FollReact1(1– )+(1–FollRj,k j,0 j a eact1) ]c (11)

Ycal =Area [FollReact1
d

d
+(1–FollReact1)

d

d
j,k j

a

t

c

t
] (12)

Appendix 2

For the F-Test, two variances, V1 and V2, are related (V2>V1 ) and compared with the statistical
quantile, Fcrit(α, f1, f2), where α is the given confidence level (or level of error probability) and f1 and
f2 are the degrees of freedom for the variances, V1 and V2. Fcrit(α, f1, f2) is calculated using a precise
approximation equation [30].
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F =exp

V

V

2

1

(13)

where

V fj j jLSQ= / (14)

Now if Fexp > Fcrit, model 1 with the variance, V1, is significantly better suited for the character-
ization of the given measurement than model 2 with the variance, V2. In the strictest sense, the F-Test
has only been realized for linear problems [31]. Nevertheless, for lack of a better test criterion, it is
used for nonlinear problems.

An additional step is tested for significance in a similar way [31]. Model 1 should have n reac-
tion steps with LSQ1 and the degree of freedom, f1. For model 2, which should have one additional
reaction step, LSQ2 and the degree of freedom, f2, were retained. Usually, LSQ decreases with the
additional step. At the same time, the degree of freedom is reduced by the number of additional pa-
rameters, so that LSQ1 > LSQ2 and f1 > f2 are valid. In the numerator of Eq. (15), the variance is the
difference in the corresponding LSQj divided by the difference in the degrees of freedom.

F =
(LSQ –LSQ )/( –

LSQ /
exp

1 2 1 2

1 1

f f

f

)
(15)

If Fexp > Fcrit, model 2 with the variance, V2 is significantly better suited for the characterization
of the measurement than model 1 with the variance, V1.

Appendix 3

With the Ozawa, Flynn and Wall method [21–23], advantage is taken of the fact that, with increasing
heating rate, thermogravimetric measurements shift to higher temperatures. For the same relative
mass losses, αj, the plot of the logarithm of the heating rate, lnßm, as a function of the reciprocal tem-
perature, 1/Tj,m, is a line, whose slope is proportional to the activation energy.

For the realization of this method, the TG signal is first transformed into the conversion vari-
able, α: Eq. (16).

α j

m,s m,j

m,s m,f

=
m t m t

m t m t

( )– ( )

( )– ( )
(16)

where m(tm,s) mass at the beginning of the decomposition step,

m(tm,f) mass at the end of the decomposition step,

m(tm,j) mass at time, tm,j, at temperature, Tm,j.

The equation for the resulting line is Eq. (17):

ln =ln –ln ( )–5.3305–1.052m

j

j

j

m,j

β α
AE

R

E

RT



 


 G (17)

Since the second term on the right side of Eq. (17) is a constant for constant αj and the first
term is small as compared to the last term, the slope, l, of the resulting line (Fig. 8) is described by l=
–1.052 E/R. In order to obtain more exact values for the activation energy, a correction is carried out
with respect to E/RTm,j [23].

By averaging over all heating rates applied, βm, Eq. 18 yields the values for lnA, where E and
αj are known and a first-order reaction is assumed for G(x) = –ln(1–α).
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ln =ln(–ln(1– ))–ln +ln –ln ( )j j

j

m m,jA p zα β
E

R
(18)

p z
z

z

s

s
s( )

(– )
–

(– )
m,j

m,j

m,j –

exp exp
d

m, j

=
∞
∫

z

(19)

z
E

RT
m,j

m,j

=

If a one-step reaction is now present, the activation energy is independent of the conversion
variable x and a horizontal line. Conversely, the dependence of the activation energy on the conver-
sion variable is an indication of the presence of a multiple-step reaction.

* * *

I would like to thank Mr. E. Kaisersberger for various discussions, which contributed greatly to
greater clarity.
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